
Learning to code - with a purpose Part 3 Adrian Oldknow Jan 2015 adrian@ccite.org

By now we have met quite a few different low-cost hardware products
which allow us (a) to monitor digital changes of state such as of a switch
or button, (b) to sense and measure analogue values such as distance or
light intensity and (c) to output digital signals to control physical devices
such as an LED, buzzer or motor. We have also met several different
software systems to develop, test and download programs to these
products which contain the rules they are to use in sensing their
environment and controlling the way they respond.

Living objects such as animals and plants survive through their ability to

respond to stimuli. A perfect example is the way a sunflower turns to
find light. For a long time humans have attempted to mimic such
systems with machinery such as automatons. With my second-hand pre-
war Meccano set 8 and its clockwork motors I was able to build my own
mini versions as a kid. My son grew up in a LEGO world in which
technical LEGO emerged with its electric motors and plastic gears. My
grandsons have the benefit of both of these but now also with other stuff
ǘƻ ǘƛƴƪŜǊ ǿƛǘƘΣ ǎǳŎƘ ŀǎ YΩbŜȄΣ /ǊǳƳōƭŜΣ DŜƴƛŜΣ Arduino, Lego WeDo and
PICAXE. In this section we will have a look at some of the other new
tools available to their (and our) generation including Raspberry Pi, LEGO

aƛƴǎǘƻǊƳǎ ŀƴŘ YΩbŜȄ ŎƻƴǘǊƻƭΦ
There are many other devices
which we could include but
ǇǊƻōŀōƭȅ ŘƻƴΩt add much new.
One is the range of educational
devices called `graphical
ŎŀƭŎǳƭŀǘƻǊǎΩ ǎǳŎƘ ŀǎ ƳŀŘŜ ōȅ /ŀǎƛƻΣ
HP and Texas Instruments which
interface to other kit for sensing
and control, such as that made by Vernier. Another are new peripheral devices
for smart phones such as the very cheap Yo!Bot shown here.

Before we dive back to the chips, breadboard and solder it might be sensible to think a bit more about what
we can learn from the different ways we have seen to send instructions to the microcontrollers which are
the brains of these devices. Whichever we write them, the key programming structures we have met are all
based on decisions such as `If x then yΩ, ̀ If x then y else zΩ, ̀ Repeat y until xΩ and ̀While x do y. Here x is
something which can be tested to be true or false, and y and z are actions to be taken. Whether we use
code blocks like Scratch, drawings like flowcharts or text like Basic or Python it is the logical structure behind
ǘƘŜ ǇǊƻƎǊŀƳ ǿƘƛŎƘ ƛǎ ǘƘŜ ƪŜȅ ŎƻƴŎŜǇǘΦ άIf you touch me then I will biteέ ŘŜƭƛǾŜǊǎ ǘƘŜ ǎŀƳŜ ǊŜǎǳƭǘ ǿƘŜǘƘŜǊ ƛǘΩs
ŎƻŘŜŘ ƛƴ ǘƘŜ ŎƘŜƳƛǎǘǊȅ ƻŦ ŀ ŘƻƎΩǎ ōǊŀƛƴ ƻǊ ǿǊƛǘǘŜƴ ƛƴ {ŎǊŀǘŎƘΗ ¢ƘŜ ƭƻƎƛŎŀƭ ǎǘǊǳŎǘǳǊŜ ƻŦ ŀ ǇǊƻƎǊŀƳ Ƙŀǎ ǘƘŜ ǇƻǎƘ
name of an ̀algorithmΩ. This is derived from the name of the 9th Century Persian mathematician Mohammed
ibn-Musa al-Khwarizmi whose work also gave rise to `algebraΩ. όbƻǘƘƛƴƎ ǘƻ Řƻ ǿƛǘƘ !ƭ DƻǊŜΩǎ ōŀŎƪƛƴƎ ōŀƴŘΗύ

The key point is that ̀ codingΩ, by itself, is the low-level task of changing the notation for an algorithm from
one system to another, such as from a flowchart to Python, or from Scratch to C#. As we have seen, a
system like Ardublocks can do that automatically to produce Arduino IDE code, ditto with PICAXE. The smart
bit is designing the logical flow of a process in the form of an algorithm. Whether you call that
ȫǇǊƻƎǊŀƳƳƛƴƎΩΣ ȫǎȅǎǘŜƳǎ ŀƴŀƭȅǎƛǎΩ ƻǊ ȫǎƻŦǘǿŀǊŜ ŜƴƎƛƴŜŜǊƛƴƎΩ ƛǎ ƻŦ ƴƻ ƳŀǘǘŜǊ ς what we need in our future
designers, technologists, engineers and scientists is the ability to come up with the smart algorithms which
provide the intelligence for physical systems to perform useful tasks. Tinkering with kits is a great way in.

mailto:adrian@ccite.org

12. Raspberry Pi and add-ons

One of the design features of the Raspberry Pi is a set of
programmable general purpose input and output (GPIO) pins available
for users to connect up for sense-and-control applications. I have to
admit to being neither a frequent user of my Raspberry Pis (I now have
three), nor of having done much programming in Python. I also have
to find my way alone ς just using the support I can find in print and on
line. So I had a good look at the Raspberry Pi SWAG website:
http://swag.raspberrypi.org/ and chose what looked like a good book ς
`!ŘǾŜƴǘǳǊŜǎ ƛƴ wŀǎǇōŜǊǊȅ tƛΩ by Carrie Anne Philbin for £6 ς and some
simple kit ς Adventures in Raspberry Pi Parts Kit for £14. I hooked up
my Pi to (a) a modern TV with HDMI input, (b) to the mains with a mini
USB power cable, (c) to a powered USB hub to drive the keyboard and
mouse and (d) with a WiFi dongle to connect to my wireless broadband network. The kit contains a guide to
the pins which slips over them so you see which are the power, ground and other pins.

Before getting going in Python you need to check you have the GPIO utility library installed. So in the
LXTerminal window you type: sudo apt-get install python-RPi.GPIO - which will install the library if it is not
already there. I am assuming that you, like me, have a revision 2 board whose pins match the template
provided in the kit. The first task is to create the circuit on the left which just blinks a single LED. The kit
includes sets of wires with different kinds of connectors at their ends. The two shown on the left have pins
at one end which go into the holes in the breadboard. At the other end are sockets which slide over the
GPIO pins on the board. A GND pin is connected to the blue (negative) rail on the breadboard.
The kit contains 2 kinds of resistors. A 330 ohm resistor is
connected from the blue rail to the E6 hole on the board. The
shorter leg of an LED is inserted in the D6 hole, and the longer
leg in the D10 hole. A connector is inserted in the A10 hole
and over the GPIO pin 24. So when there is power on pin 24
the LED will light.

Open the Python IDLE3 editor, select File ς New Window and
enter the Python program to flash the LED on Pin 24 on and
off. Save the file as LEDblink.py in the Documents folder.

In order to run the file we need to go back into the LXTerminal
to write some Linux code to run the file as a `super-ǳǎŜǊΩΗ

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(24, GPIO.OUT)
while True:
 GPIO.output(24, True)
 time.sleep(1)
 GPIO.output(24, False)
 time.sleep(1)

cd Documents
sudo python3 LEDblink.py

http://swag.raspberrypi.org/

You will need to use Control and C to stop the program.

The next exercise in the book is to move the LED output
to pin 23 and to wire a push switch and another 330
ohm resistor as input to pin 24. The board is powered
by connecting the 5V GPIO pin to the red positive
power rail of the breadboarŘΦ hƴŎŜ ǿŜΩǾŜ ƛƴǎǘŀƭƭŜŘ ŀƴŘ
connected the components we have to modify the
LEDblink program to make the output to pin 23 depend
on the state of the input on pin 24 ς not exactly rocket
science! {ŀǾŜ ǘƘŜ ǇǊƻƎǊŀƳ ŀǎ ȫōǳǘǘƻƴ[95ΩΦ

My photo shows the program running. When no-one is
pressing the button the LED is shining. But when it is
pressed, the LED does go off ς honestly! What hardware
and software changes would you need to make this circuit
into a Morse code sender using sound rather than light?

Now I am beginning to get a little more confident with using both the Raspberry Pi and the GPIO pins I
thought I would hunt to see if anyone has managed to build them into a Scratch environment. The answer,
ƻŦ ŎƻǳǊǎŜΣ ƛǎ άȅŜǎέΦ aȅ DƻƻƎƭƛƴƎ ƭŜŘ ƳŜ ǘƻ ά[ŜŀǊƴ Iƻǿ ǘƻ ¦ǎŜ wŀǎǇōŜǊǊȅ tƛ DtLh tƛƴǎ ²ƛǘƘ {ŎǊŀǘŎƘέ by Ben
Miller: http://computers.tutsplus.com/tutorials/learn-how-to-use-raspberry-pi-gpio-pins-with-scratch--mac-59941. While the basic ideas
are still up-to-date, the links are not. So after a bit more hunting I found just the site I was looking for:

http://simplesi.net/scratchgpio/scratch-raspberrypi-gpio/. With more than a little trepidation I followed the instructions:
Installing ScratchGPIO6 software on a Raspberry Pi with Raspberry Pi connected to Internet.
Use the LX Terminal window to enter: wget http://goo.gl/xzJlz7 -O isgh6.sh
Once the installer has been downloaded then just type: sudo bash isgh6.sh .

This installs two new icons on the Desktop. The one we need is called ȫ{ŎǊŀǘŎƘDtLhсΩ ǿƘƛŎƘ ƛǎ {ŎǊŀǘŎƘн ǿƛǘƘ
added commands to read from and write to the GPIO pins. The pin numbering used has nothing to do with
that we just used with Python! Pin 1 is the first pin on the left marked 3.3V and pin 2 is the first on the right
marked 5V. The pins down the left-hand side are numbered 1,3,5,7,9,11,13,15,17,19,21,23,25,27 and on the
right they are 2,4,6,8,10,12,14,16,18,20,22,24,26,28. In my example I am using the same circuits as for the

ȫ[95ōƭƛƴƪΩ ŀƴŘ ȫōǳǘǘƻƴ[95Ω tȅǘƘƻƴ ǇǊƻƎǊŀƳǎ ŀōƻǾŜΦ ¢ƘŜ [95 ƛǎ ŀǘǘŀŎƘŜŘ ǘƻ Ǉƛƴ мо ŀƴŘ ǘƘŜ ōǳǘǘƻƴ ǘƻ Ǉƛƴ мл.

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(24, GPIO.IN)
while True:
 if GPIO.input(24):
 GPIO.output(23, False)
 else:
 GPIO.output(23, True)
 time.sleep(0.1)

http://tutsplus.com/authors/ben-miller
http://tutsplus.com/authors/ben-miller
http://computers.tutsplus.com/tutorials/learn-how-to-use-raspberry-pi-gpio-pins-with-scratch--mac-59941
http://simplesi.net/scratchgpio/scratch-raspberrypi-gpio/

hǳǘǇǳǘ ǘƻ ŀ Ǉƛƴ ƛǎ ǇŜǊŦƻǊƳŜŘ ǿƛǘƘ ǘƘŜ ȫōǊƻŀŘŎŀǎǘΩ ōƭƻŎƪΦ ¢ƘŜ ŦƛǊǎǘ ǘƛƳŜ ȅƻǳ ǳǎŜ ƻƴŜ ǘƻ ǎŜƴŘ ŀ ǎƛƎƴŀƭ ǘƻ ŀ Ǉƛƴ
you will ƴŜŜŘ ǘƻ ǎŜƭŜŎǘ ȫƴŜǿΧΩ ŦǊƻƳ ǘƘŜ ŘǊƻǇ Řƻǿƴ ƳŜƴǳ ŦǊƻƳ ǘƘŜ ōƭŀŎƪ ŘƻǿƴǿŀǊŘ ŀǊǊƻǿ ǘƻ ǘƘŜ ǊƛƎƘǘ ƻŦ
ȫōǊƻŀŘŎŀǎǘΩΦ ¢Ƙƛǎ ǿƛƭƭ ōǊƛƴƎ ǳǇ ŀ ŘƛŀƭƻƎ ōƻȄ ŀǎƪƛƴƎ ŦƻǊ ǘƘŜ ȫaŜǎǎŀƎŜ ƴŀƳŜΥΩΦ ¢ȅǇŜ ȫǇƛƴмоƘƛƎƘΩ ŀƴŘ ǇǊŜǎǎ hYΦ
5ƻ ǘƘŜ ǎŀƳŜ ŦƻǊ ǘƘŜ ȫōǊƻŀŘŎŀǎǘ ǇƛƴмоƭƻǿΩ ōƭƻŎƪΦ LŦ ȅou want to use pin13 again in this session with Scratch
your commands will have been saved to a list from which you can pick it up again. In order to control the
LED with the push-ōǳǘǘƻƴ ǿŜ ƴŜŜŘ ŀ ǘŜǎǘ ŎƻƳƳŀƴŘ ǎǳŎƘ ŀǎ ȫLŦ Ȅ ǘƘŜƴ ȅ ŜƭǎŜ ȊΩΦ IŜǊŜ ǿŜ ƘŀǾŜ ōuilt the x test
using a green Operator block and a blue Sensing block. Use the `slider v ǎŜƴǎƻǊ ǾŀƭǳŜΩ ōƭƻŎƪ ŀƴŘ ƻǇŜƴ ǘƘŜ
menu of sensors by clicking on the black down arrow. You should see a list of available output pins including
pin 10. We are looking to see when the button is pressed, which is when pin 10 goes high. When it is low it
returns a value of 0, so we could test when it is equal to 1, or when it is greater than zero. So thanks to the
ƎƻƻŘ ƻŦŦƛŎŜǎ ƻŦ άǎƛƳǇƭŜŎȅέ ŦǊƻƳ [ŀƴŎŀǎƘƛǊŜ ǿŜ ƪƴƻǿ ƘŀǾŜ an ideal tool for gadetting using the Raspberry Pi
and its GPIO pins with Scratch 2.

In part 1 I mentioned the `Raspberry Pi Educational ManualΩ from the Computing At School group (CAS):
http://www.raspberrypi.org/cas-educational-manual/. You can find further suggestions for ways of using the GPIO pins
ǘƘŜǊŜΦ !ƴƻǘƘŜǊ ŜȄŎŜƭƭŜƴǘ ǎƻǳǊŎŜ ƛǎ ǘƘŜ ǎŜŎƻƴŘ ŜŘƛǘƛƻƴ ƻŦ ǘƘŜ ȫwŀǎǇōŜǊǊȅ tƛ ¦ǎŜǊ DǳƛŘŜΩ ōȅ 9ōŜƴ ¦Ǉǘƻƴ ŀƴŘ
Gareth Halfacree: http://www.amazon.co.uk/Raspberry-User-Guide-Eben-Upton/dp/1118921666/ref=dp_ob_title_bk.

This has a chapter (16) on `Add-ƻƴ .ƻŀǊŘǎΩ
designed to be used in conjunction with GPIO
Ǉƛƴǎ ƻŦ ŀ wŀǎǇōŜǊǊȅ tƛΦ ¢Ƙƛǎ ŎƻǾŜǊǎ /ƛǎŜŎƻΩǎ ȫ{ƭƛŎŜ
ƻŦ tƛΩΣ !ŘŀŦǊǳƛǘΩǎ ȫtǊƻǘƻǘȅǇƛƴƎ tƛ tƭŀǘŜΩ ŀƴŘ CŜƴ
[ƻƎƛŎΩǎ ȫDŜǊǘōƻŀǊŘΩΦ ¢ƘŜǎŜ ŀƴŘ ƻǘƘŜǊǎ ŀǊŜ
ŀǾŀƛƭŀōƭŜ ŦǊƻƳ ǘƘŜ ȫtƛ IǳǘΩΥ
http://thepihut.com/collections/raspberry-pi-gpio.

One which I came across is the RaspiRobot Board
V2 from Monk Makes via Amazon at £17.50:
http://www.amazon.co.uk/Monk-Makes-Ltd-RaspiRobot-

Version/dp/B00KLJMD1Y . This slips over the GPIO pins
to fit neatly on top of the Raspberry Pi board.
You still have access to the GPIO pins, but now
you also have further handy inputs and outputs to connect for sense and
control. The instrǳŎǘƛƻƴǎ ǘƻ ƛƴǎǘŀƭƭ ǘƘŜ ǎƻŦǘǿŀǊŜ ŀǊŜ ƻƴ {ƛƳƻƴ aƻƴƪΩǎ ǎƛǘŜ ŀǘΥ
https://github.com/simonmonk/raspirobotboard2. It installs a library to be used with Python
2 ς so open IDLE and write your programs in a New Window. The installation
created a folder within the ̀ home/piΩ directory called ̀ rrb2-1.1Ω from where you
have been typing in the commands in the LXTerminal. So save your program in
this directory as e.g. `RProbBlinkΩ and run it from the command window with
`sudo python RProbBlink.pyΩ. As before, you will need to use Control and C to
interrupt the program.

The tantalising thing about Simon MonkΩs site is the cool stuff he has been doing
with kit attached to the Raspberry Pi. The web-page we used
to find how to install the software shows a robot vehicle
carrying a Raspberry Pi, a Raspirobot V2 board and a battery
pack with 6 AA batteries mounted on a base-board and driving
two motors like those we used with Crumble.
Now we really are getting down near the nitty-gritty of bio-
mimicry. If the RPi is its brain, then the SD card is its memory,
the battery box is its lungs and stomach, the Raspirobot board
is its nerve centre and heart, the motors and wheels are its legs
and the distance finder is its eyes! It can also use WiFi or
Bluetooth to provide its voice and ears!

from rrb2 import *
import time
rr = RRB2()
while True:
 rr.set_led1(1)
 rr.set led2(0)
 time.sleep(1)
 rr.set_led2(1)
 rr.set_led1(0)
 time.sleep(1)

http://www.raspberrypi.org/cas-educational-manual/
http://www.amazon.co.uk/Raspberry-User-Guide-Eben-Upton/dp/1118921666/ref=dp_ob_title_bk
http://thepihut.com/collections/raspberry-pi-gpio
http://www.amazon.co.uk/Monk-Makes-Ltd-RaspiRobot-Version/dp/B00KLJMD1Y
http://www.amazon.co.uk/Monk-Makes-Ltd-RaspiRobot-Version/dp/B00KLJMD1Y
https://github.com/simonmonk/raspirobotboard2

Of course, the Raspberry Pi also speaks many languages!
It comes with Linux, Python (2 and 3) and Scratch pre-
installed but there are many other packages and
languages available ς see some of the many at
Raspberry Connect such as:
http://www.raspberryconnect.com/raspbian-packages-list/item/61-raspbian-

educational.

The CAS `Raspberry Pi Educational ManualΩ was released
with two chapters withheld ς one on Greenfoot and the
other on GeoGebra. This was because at the time the
early versions of Raspberry Pi ran Java-based
applications at an unacceptably slow rate. I hope you
can find time to explore GeoGebra which is a
remarkable project to make STEM tools available freely
for all: http://www.geogebra.org/. The missing chapter from
the Educational Manual is available from:
https://www.dropbox.com/s/fw8l9wg0a767zl4/pi_5-geogebra_v1rc.pdf?dl=0
. An example from it is shown here where graphs and
geometric figures can be drawn over an imported image.
Similarly the Arduino IDE can be found at:
http://www.raspberryconnect.com/raspbian-packages-list/item/62-raspbian-electronics - and once this is installed it will also work
with the Engduino as a `LilypadΩ device. The only difference is that the Serial Port in Tools now has a
different name like: `/dev/tty/ACM0Ω.

In order to make life a little
easier I have just invested in
a new Model B+ for £24.35
from: http://uk.rs-

online.com/web/p/processor-
microcontroller-development-

kits/8111284/.

This now provides 4 USB
ports and extra GPIO pins.
Here it is with the keyboard,
mouse, WiFi dongle and
Engduino all connected to
UB ports and an Adafruit
strip over the GPIO pins.

While this is fine for home
use in place of a desk-top
PC, there is also a smart
way to turn a Raspberry Pi
into a laptop for mobile
computing! The answer lies in what was a very expensive accessory to go with a brand of mobile phone
which are no longer made ς the ̀ Lapdock for Motorola ATRIXΩ phone. They appear from time to time on e-
Bay (this link is to one costing £65.50 inc P&P) ς make sure that ƛǘΩǎ ŀ version with an English keyboard.
Unless you are pretty confident with a soldering iron you might need to find a friend to make you up a
suitable cable! https://www.youtube.com/watch?v=yZkz_a52I6s&feature=youtu.be. The photos below show a model B
Raspberry Pi (not the new B+) attached to the Lapdock through the micro power USB, the HDMI and USB
ports. This gives us a spare port on the Raspberry Pi to which an Engduino has been connected. There are
also two USB ports on the Lapdock to which a memory stick and a WiFi dongle have been attached.

http://www.raspberryconnect.com/raspbian-packages-list/item/61-raspbian-educational
http://www.raspberryconnect.com/raspbian-packages-list/item/61-raspbian-educational
http://www.geogebra.org/
https://www.dropbox.com/s/fw8l9wg0a767zl4/pi_5-geogebra_v1rc.pdf?dl=0
http://www.raspberryconnect.com/raspbian-packages-list/item/62-raspbian-electronics
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/8111284/
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/8111284/
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/8111284/
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/8111284/
http://www.ebay.co.uk/itm/like/321036423824?limghlpsr=true&hlpv=2&ops=true&viphx=1&hlpht=true&lpid=108&chn=ps&device=c&adtype=pla&crdt=0&ff3=1&ff11=ICEP3.0.0-L&ff12=67&ff13=80&ff14=108
http://www.ebay.co.uk/itm/like/321036423824?limghlpsr=true&hlpv=2&ops=true&viphx=1&hlpht=true&lpid=108&chn=ps&device=c&adtype=pla&crdt=0&ff3=1&ff11=ICEP3.0.0-L&ff12=67&ff13=80&ff14=108
https://www.youtube.com/watch?v=yZkz_a52I6s&feature=youtu.be

You donΩt need a mouse or key board because the Lapdock has a touch-pad and its own keyboard.

The screen show the normal
programming tools: Scratch, Python 2,
Python 3, and the LXTerminal together
with our new installations of Scratch

GPIO, Arduino IDE and GeoGebra. The Scratch program shown is for the LEGO WeDo `Mars CrawlerΩ.

Another ōƻŀǊŘ L ōƻǳƎƘǘ ŀ ǿƘƛƭŜ ōŀŎƪ ƛǎ ŎŀƭƭŜŘ ȫtƛCŀŎŜΩΣ
developed by a team from Manchester University:
http://www.piface.org.uk/products/piface_digital/. This now has an updated
version which has yet to arrive but works in the same way:
http://piface.github.io/pifacedigitalio/pifacedigital.html.

It costs £24.50 from CPC Farnell. After installing the PiFace
Digitalio package for either Python 2 or Python 3 you can use
its inputs and outputs in Python programs. But you can also set
up Scratch to use these as well. Instructions are found at:
http://www.piface.org.uk/guides/scratch_with_pifacedigital/Getting_Started_With_Sc

ratch_PiFace_Digital/ .
So that concludes this section which
has been entirely devoted to the
Raspberry Pi and devices designed to
enhance its use. There is a wide
community of users and developers
who blog frequently and continually
develop free and/or low-cost tools to
enhance its range of applications.

For those who have come to rely on
Windows or Mac computers it does
take rather a lot of getting used to,
but it is clearly well worth the effort.
Once you have set up the hardware
and software you plan to use, then its
Desktop is just as easy to use as a
Windows or Mac one.

The final section will be out shortly
and there are still some very cool new
tools to find our way around!

http://www.piface.org.uk/products/piface_digital/
http://piface.github.io/pifacedigitalio/pifacedigital.html
http://cpc.farnell.com/jsp/displayProduct.jsp?sku=SC1352696&CMP=aballbrochure&gross_price=true&gclid=CjwKEAiA0O2lBRDOrPX4oJP3t2oSJACjpaHAN8F4W-aO2yzFUWPQwddgt6cpP3Gi6wbE6CCBrV47GBoCJHLw_wcB
http://www.piface.org.uk/guides/scratch_with_pifacedigital/Getting_Started_With_Scratch_PiFace_Digital/
http://www.piface.org.uk/guides/scratch_with_pifacedigital/Getting_Started_With_Scratch_PiFace_Digital/

